Сверхпроводимость сегодня

"Сегодня" начинается с очередной (уже третьей!) Нобелевской премии за открытия в области сверхпроводимости. Ее получили Беднорц и Мюллер, которые синтезировали сверхпроводник Ba-Sr-Cu-O, проложив тем самым тропинку к целому классу высокотемпературных сверхпроводников (ВТСП) Tс ~ 100 К (наконец-то был преодолен так называемый "азотный барьер"). В сверхпроводимости начался настоящий "бум". В среднем публиковалось около 15 статей в день. Однако к концу второго тысячелетия картина высокотемпературной сверхпроводимости остается совершенно неясной.>

До сих пор непонятен механизм сверхпроводимости ВТСП. Не исключено, что он является фононным. Обсуждаются также спиновый, экситонный и другие электронные механизмы. Ни одна из предложенных моделей не лишена недостатков и не позволяет объяснить всю совокупность экспериментальных фактов. По-видимому, при описании ВТСП нельзя ограничиваться каким-либо одним типом взаимодействия.

Дело осложняется тем, что даже в нормальном состоянии ВТСП обладают рядом необычных свойств. Некоторые авторы, к числу которых относится известный физик Ф.Андерсон, подвергают сомнению возможность использования ферми-жидкостных представлений для описания ВТСП. "Будущее покажет, так ли это", - говорит В.Л.Гинзбург. Но если фононный механизм в ВТСП окажется все же определяющим, то величина Tс в классе медных оксидов вряд ли превысит 200К.

Весьма примечательно, что В.Л.Гинзбург оставляет конец периода "сегодня" неопределенным. Автору хотелось бы, чтобы событием, которым закончится этот период, стало понимание механизма сверхпроводимости ВТСП.

Чуть более 10 лет назад в средствах массовой информации стали упоминаться такие понятия как "сверхпроводимость", " высокотемпературная сверхпроводимость", "низко - температурная сверхпроводимость" термины, которые ранее обычно употребляли только специалисты - физики. Сообщалось о революционном научном открытии, о прорыве в микроэлектронике и наступлении новой эры в техническом развитии общества.

Почему было уделено тогда, и тем более сегодня, такое внимание явлению, известному ученым и специалистам уже десятки лет, но с которым большинство людей сталкивались разве что в произведениях писателей-фантастов? В чем суть этого явления и какие оно сулит перспективы? Чтобы ответить на эти вопросы, обратимся к истории открытия сверхпроводимости и поясним основные понятия, связанные с ним.

В 1911г. голландский физик Х. Камерлинг-Оннес, исследуя электрическое сопротивление ртути при очень низких температурах, неожиданно для себя обнаружил, что при температуре , равной 4,15° К (это приблизительно - 269° С), сопротивление образца вдруг резко упало до нуля, в то время как такие прекрасные проводники, как золото и медь при тех же температурах имели весьма малое, но вполне измеримое остаточное сопротивление(10-9 Ом·см). Это явление Камерлинг-Оннес назвал "сверхпроводимость", а температуру Tс, при которой происходит переход из нормального в сверхпроводящее состояние, - "критической" или "температурой перехода".

Некоторое время спустя обнаружили, что подобный же эффект наблюдается и в других металлах, например, алюминии, свинце, индии. Из чистых металлов самую высокую Tс имеет ниобий: Tс(Nb) ~ 10° К.

С течением времени учеными достигался дальнейший рост критических температур сверхпроводников. Правда, медленно, но довольно постоянными темпами (рис.1). И только в 1973 г. была зарегистрирована самая высокая Тс в сплаве ниобия с германием (NbGe) - 23,2° К.


Рис. 1. График роста рекордных значений Tс.

В конце 1986 г. мир облетела сенсационная весть: ученые Ж. Бендорц и К. Мюллер, работающие в Цюрихе в исследовательской лаборатории известной компьютерной фирмы IBM, сообщили о зафиксированном ими резком падении сопротивления керамического металлооксидного образца Ba-La-Cu-O при температуре 35° К! А вскоре поступило подтверждение других исследователей, в том числе российских, о наблюдении этого явления.

В первых числах марта 1987 г. стало известно о новом замечательном открытии: в Алабамском и Хьюстонском университетах группой М. К. Ву с сотрудниками на керамике Y-Ba-Cu-O (так называемой иттриевой керамике)была достигнута температура сверхпроводящего перехода Tс ~ 92° К, что гораздо выше температуры кипения жидкого азота (77° К, или -196° С), дешевого и доступного хладагента, производимого промышленностью в больших количествах.

На сегодняшний день уже имеются материалы, в которых температура перехода в сверхпроводящее состояние достигает 135° К, и нет оснований полагать, что это уже предел. Интерес к сверхпроводимости принял массовый характер. В терминологии физиков появились два понятия: "низкотемпературная сверхпроводимость" (НТСП) и "высокотемпературная сверхпроводимость" (ВТСП). Авторам открытия ВТСП Ж. Бендорцу и К. Мюллеру была присуждена Нобелевская премия.

В течении многих лет считали, что сверхпроводящее состояние, в первую очередь, характеризуется бесконечной проводимостью. В 1933 г. немецкими физиками Мейснером и Оксенфельдом было открыто второе фундаментальное свойство сверхпроводников - идеальный диамагнетизм. Эффект Мейснера (рис. 2)состоит в том, что при охлаждении массивного сверхпроводника ниже температуры перехода происходит выталкивание магнитного поля из толщи сверхпроводника образца в окружающее магнитное поле, так что внутри образца (за исключением тонкого поверхностного слоя толщиной 100...1000 ангстрем) оно всегда равно нулю. Именно эти два свойства - бесконечная проводимость и идеальный диамагнетизм - являются главными характеристиками сверхпроводимости.


Рис. 2. Эффект Мейснера в шаре из сверхпроводника:
при T > Tс (шар в "нормальном" состоянии") силовые линии магнитного поля проникают в сверхпроводник;
при T < Tс (шар в сверхпроводящем состоянии) магнитное поле полностью выталкивается из шара.

Исследования открыли ещё один важный эффект. Если увеличивать напряженность магнитного поля, то при некоторой величине его Н=Нс, называемой "критическое магнитное поле", сверхпроводимость скачком исчезает и образец переходит в "нормальное" состояние. То же самое происходит при увеличении тока, пропускаемого через сверхпроводник. Сверхпроводимость разрушается при достижении током критической величины I=Iс.

Позднее было обнаружено, что в зависимости от вида взаимодействия с магнитным полем сверхпроводники делятся на два типа: сверхпроводники 1-го рода - как правило, чистые металлы и сверхпроводники 2-го рода, к которым относится большинство сплавов, чистый ниобий и вновь открытые высокотемпературные металлооксидные сверхпроводники.

Сверхпроводники 1-го рода, характерная особенность которых состоит в том, что они полностью выталкивают магнитный поток из своего объема, все имеют критические магнитные поля ниже 100 мТл, при этом они скачком переходят из сверхпроводящего состояния в нормальное.

У сверхпроводников же 2-го рода, существование которых впервые было предсказано в 1952 г. одним из основоположников теории сверхпроводимости российским ученым А. А. Абрикосовым, при величине внешнего поля Н=Нс1 (первое критическое поле) реализуется смешанное состояние (рис. 3), в котором сверхпроводник как бы пронизан тонкими нитями или цилиндриками (диаметром порядка 10 см), состоящими из нормальной фазы металла и ориентированными по полю Н. Через каждую такую нить ("абрикосовский вихрь") в металл проникает ровно один квант потока магнитного поля Фс.


Рис. 3. Смешанное состояние шара - сверхпроводника 2-го рода при величине магнитного поля Hc1< H < Hc2; T < Tc.

Таким образом, внешнее магнитное поле присутствует в образце, хотя в пространстве между вихрями сверхпроводимость сохраняется и, следовательно, сопротивление образца остается равным нулю. С увеличением Н число вихрей растет, а расстояние между ними уменьшается, т.е. внешнее поле как бы сжимает решетку вихрей до тех пор, пока они не сольются и не произойдет полное разрушение сверхпроводимости при Н=Hc2 (второе критическое поле). Величина Hc2 составляет десятки Тл. Только после открытия сверхпроводников 2-го рода, преодолев огромные трудности, инженеры и технологи создали мощные магниты, которые позволяют получить постоянные поля напряженностью до 20 Тл.

Важными свойствами сверхпроводимости являются квантование магнитного потока, а так же то, что сверхпроводимость наступает, когда электроны объединяются попарно.


Сайт управляется системой uCoz